
0Teilen Mehr Nächstes Blog» Blog erstellen Anmelden

Greg Smith's Note Magnet

Sunday, August 3, 2008

A Linux write cache mystery

One happy coincidence for me last month is that I discovered a
friend of mine had built a Linux-based server running PostgreSQL
and put it into a colo, something I had been pricing out myself. He
created me an account and now I've got a place to host some
personal MediaWiki projects I'd been planning. One known issue
my friend mentioned is that he'd been running into regular
problems where the whole server just froze up for a few seconds.
Because of the pattern of when it happened, he suspected it was
related to heavy writes, and furthermore suspected the software
RAID-1 implementation. Since that seemed unlikely to me, I told
him to hold off on breaking the RAID until I could take a look at
things.

The server is a quad-core system with 8GB of RAM and a pair of
SATA disks in software RAID-1. The OS is CentOS 5.2, based on
the RHEL5 release, and it's using kernel 2.6.18 (the regular one,
not the Xen one).

I started by doing the same read/write testing I always do on a
system whose I/O I don't necessarily trust or understand: that
procedure is outlined at Testing your disks for PostgreSQL. Since
the server has 8GB of RAM I used 2,000,000 blocks. I opened a
couple of sessions to the server, executed that in one window, top
in a second, and "vmstat 1" in a third. Watching a single second
vmstat is one of the most useful things you can do for figuring out
where bottlenecks are at on a system.

In this case, what quickly became apparent is that the system was
alternating between healthy periods that looked like this:

procs -----------memory---------- ---swap-- -----io---- --system-- -----
r b swpd free buff cache si so bi bo in cs us sy i
2 5 5196 46428 28160 6188640 0 0 0 539720 1261 673 0 28
0 6 5196 47268 28212 6047744 0 0 0 988400 1235 615 0 21
0 6 5196 46980 28272 6047216 0 0 0 64032 1260 658 0 6
1 5 5196 45884 28336 6046788 0 0 0 61568 1281 677 0 7
1 5 5196 47276 28400 6043408 0 0 0 65632 1267 665 0 7
0 6 5196 46272 28460 6044080 0 0 0 65568 1272 641 0 6
0 6 5196 48188 28524 6042420 0 0 0 65536 1271 626 0 6
0 6 5196 46228 28592 6044836 0 0 0 66928 1298 668 0 7
0 5 5196 46648 28652 6044812 0 0 0 61504 1264 648 0 6

Greg Smith's Note Magnet: A Linux write cache mystery

1 of 8

The bo (block out) number is the number to watch on this write
test. That's in KB/s, so the entries in the later section here are all
approximately 65MB/s. But at the beginning, it's writing in the
Linux disk cache at a really high speed, as much as 988MB/s at
the beginning. Note that these numbers are total I/O, which
includes both of the disks in the RAID-1 pair. That means the
actual per-disk write rate is closer to 32MB/s, a bit on the low
side, but that's presumably because the disks are already
backlogged with writes from the initial burst.

That's a healthy period. Here's what the unhealthy ones looked
like:

procs -----------memory---------- ---swap-- -----io---- --system-- -----
r b swpd free buff cache si so bi bo in cs us sy i
0 4 3780 935592 32048 5205528 0 0 0 0 1270 371 0 4
0 4 3780 945140 32048 5205528 0 0 0 0 1293 383 0 3
0 4 3780 954316 32048 5205528 0 0 0 0 1271 370 0 3
0 4 3780 963616 32048 5205528 0 0 0 0 1293 385 0 3
1 4 3780 973288 32048 5205528 0 0 0 0 1293 372 0 3
0 4 3780 982464 32048 5205528 0 0 0 0 1280 395 0 3
0 4 3780 992384 32048 5205528 0 0 0 0 1283 373 0 4
0 4 3780 1002180 32048 5205528 0 0 0 0 1320 380 0 3
0 4 3780 1011480 32048 5205528 0 0 0 0 1280 371 0 3
0 4 3780 1021028 32048 5205528 0 0 0 0 1315 389 0 4
0 4 3780 1030204 32048 5205528 0 0 0 0 1280 372 0 3
0 4 3780 1039132 32048 5205528 0 0 0 0 1279 383 0 3
0 4 3780 1049052 32048 5205528 0 0 0 0 1273 369 0 3

That's over 20 seconds straight where zero blocks were written.
That certainly seems to match the reported problem behavior of a
long unresponsive period, and sure enough some of the sessions I
had open were less responsive while this was going on. The
question, then, is why it's happening? The disks seem to be
working well enough; here's the summary at the end of the dd (the
version of dd included in RHEL5 now provides this for you):

16384000000 bytes (16 GB) copied, 209.117 seconds, 78.3 MB/s

78MB/s to each disk in the pair is completely reasonable.

I wrote a long paper on how Linux handles heavy writes called The
Linux Page Cache and pdflush because I never found a source that
really covered what happens in this situation. What I recommend
there is watching /proc/meminfo to see what's going on. Here's a
little shell bit you can execute to do that:

while [1]; do cat /proc/meminfo; sleep 1; done

With some practice you can note what numbers are constantly
moving, catch when the bad behavior occurs, then hit control-C to
break and peruse the last few entries in your terminal app

Greg Smith's Note Magnet: A Linux write cache mystery

2 of 8

scrollback buffer. Here's what I found right around the same time
as the lull periods:

MemTotal: 8174540 kB
MemFree: 62076 kB
Buffers: 21724 kB
Cached: 6158912 kB
SwapCached: 0 kB
Active: 1126936 kB
Inactive: 6101688 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 8174540 kB
LowFree: 62076 kB
SwapTotal: 16771840 kB
SwapFree: 16766644 kB
Dirty: 6640 kB
Writeback: 3230792 kB ***

Note the line I starred there for Writeback. At the point where the
system was stalling, a full 3.2GB of data was queued to write.
That's 40% of RAM. Going back to my Linux page cache paper,
you'll find that number listed: 40% is the point where Linux
switches to the high dirty_ratio behavior, where all processes are
blocked for writes. On a fast server with this much RAM, you can
fill gigabytes of RAM in seconds, but writing that out to disk is still
going to take a long time. If we work out the math, 3.2GB to write
to two disks capable of 78MB/s each works out to...20.5 seconds.
Well look at that, almost exactly the length of our long slow
period, where process writes were stalled waiting for the kernel to
clean up. I love it when the math comes together.

So, what to do? Well, this problem (way too many writes buffered
on systems with large amounts of RAM) was so obvious that in the
2.6.22 Linux kernel, the defaults for the caching here were all
lowered substantially. This is from the release notes to 2.6.22:

Change default dirty-writeback limits. This means the
kernel will write "dirty" caches
differently...dirty_background_ratio defaulted to 10,
now defaults to 5. dirty_ratio defaulted to 40, now it's
10

A check of this server showed it was using the 2.6.18 defaults as
expected:

[gsmith@server ~]$ cat /proc/sys/vm/dirty_ratio
40
[gsmith@server ~]$ cat /proc/sys/vm/dirty_background_ratio
10

So what I suggested to my friend the server admin was to change

Greg Smith's Note Magnet: A Linux write cache mystery

3 of 8

these to the new values that are now standard in later kernels. It's
easy to put these lines into /etc/rc.d/rc.local to make this change
permanent after trying it out:

echo 10 > /proc/sys/vm/dirty_ratio
echo 5 > /proc/sys/vm/dirty_background_ratio

After doing that, I re-ran the dd test and things were much better.
There were a few seconds where there was a small blip in
throughput. During the 4 minute long test I found one 4-second
long period writes dropped to the 2MB/s level. But for the most
part, the giant bursts followed by lulls were gone, replaced by a
fairly steady 130MB/s of writing the whole time. The final dd
numbers looked like this after the retuning:

16384000000 bytes (16 GB) copied, 261.112 seconds, 62.7 MB/s

So this did drop average and peak throughput a bit. That's usually
how things worst: best throughput to disks usually involves
writing in larger bursts, which is efficient but very disruptive. But
that's a small price to pay for making the many second long pauses
go away.

This particular problem shows up in all kinds of places where
heavy writing is being done. Tuning these parameters is also one
of the suggestions I make for people running PostgreSQL 8.2 or
earlier in particular who want to tune checkpoint behavior better.
In that context, there have even been reports of people turning
this particular write cache off altogether, which again would lower
average throughput, but in that case it was worth it for how much
it decreased worst-case behavior.

Time will tell if there's anything else going on that was
contributing to the pauses originally reported that is still
happening on this server, but this looks like a pretty clear smoking
gun that's now been holstered.
Posted by Greg Smith at 11:56 AM
Labels: linux, postgresql

13 comments:

tripy said...

Greg Smith's Note Magnet: A Linux write cache mystery

4 of 8

Excellent writeup !
Memory management on linux has always been a bit of a "mystery box"
to me.

I've learned a lot reading your post today.
Thank you very much!

August 3, 2008 at 2:05 PM

eggyknap said...

Some systems install watch(1) by default, which you can use instead of
while [1] to reduce typing and highlight changes in output from one
second to the next:

watch -n 1 -d "cat /proc/meminfo"

August 3, 2008 at 2:17 PM

chris said...

outstanding write up... This will definitely help those launching out on
new projects.

I definitely have been exposed to some new things here.

August 3, 2008 at 10:12 PM

Greg Smith said...

"watch" is fun and useful for figuring out what's going on initially. The
reason I didn't use it here is that I inevitably want to go back a bit after
seeing something interesting, and the way it takes over the terminal
isn't very compatible with using scrollback for that purpose. For
example, when I was looking for the peak in Writeback, I waited until
the value started going down rather than up, hit control-C, then went
back a few seconds to find the exact peak.

Another command that is helpful to know about in this particular
context is tee, which allows you to watch the activity on the screen and
save it to a file. If you create a script and put something like this in it:

$ echo "while [1]; do cat /proc/meminfo; date; echo; sleep 1; done" >
meminfo

$ chmod +x ./meminfo

$./meminfo | tee log

You then get that info on the screen and in a file you can review later
with timestamps. tee is also handy for the vmstat output.

Now, if you have both watch and tee available, you can get really fancy
like this:

Greg Smith's Note Magnet: A Linux write cache mystery

5 of 8

watch -n 1 -d "(cat /proc/meminfo; date; echo) | tee -a log"

To get the best of both worlds--a full log and interactive delta tracking.

August 4, 2008 at 1:37 AM

RyanDBair said...

I had a very similar problem on an Intel based server. It turned out that
due to a bug SAS controller firmware, the disk cache could be disabled.
I updated the firmware, re-enabled the disk cache and its been smooth
sailing ever since.

August 5, 2008 at 12:34 PM

Jeff said...

Great writeup! One question though:

If the disks are in RAID-1, it has to write the data to both disks anyway,
so why are you counting the independent writing ability of the disks?

August 7, 2008 at 1:11 PM

Greg Smith said...

I'm not really counting them separately, I was just pointing out that the
number reported by vmstat is a total of the two when showing that
report.

August 10, 2008 at 5:30 PM

Bricklen said...

To highlight the Writeback column for easier recognition, you can also
apply a bit of perl to your command:

while [1]; do cat /proc/meminfo | perl -p -e 's/(Writeback.*)
/\033[46;1m$1\033[0m/ig;'; sleep 1; done

September 1, 2009 at 6:23 PM

Brian said...

while : ; do stuff ;done

October 1, 2009 at 12:49 PM

Brian said...

...or really, if the "stuff" is just one thing, or if one of the things in stuff
is suitable, just use it directly in place of : or true or [1].

while cat /proc/meminfo ; sleep 1 ;done

Greg Smith's Note Magnet: A Linux write cache mystery

6 of 8

Newer Post Older Post

Post a Comment

Home

Subscribe to: Post Comments (Atom)

Blog Archive
► 2012 (1)

► 2011 (2)

use the cat as the testee, not the sleep, or some other thing that, if it
should fail for some reason, will halt the loop instead of the loop trying
to run something broken forever.

Apologies for focusing on such a nitpicky comparatively irrelevant issue
compared to the gold in the actual meat of the article. I landed here
because I was searching for insights of course, and here I found some
good ones. Thanks much!

October 1, 2009 at 12:58 PM

pbsl said...
This comment has been removed by a blog administrator.
December 7, 2009 at 8:21 PM

BlackBurried said...

Why not just use O_DIRECT in your benchmarking and bypass VM
cache altogether?

February 15, 2010 at 11:14 AM

Greg Smith said...

O_DIRECT will completely kill performance in lots of situations. You
need the OS to do some caching to allow write combining, or any time
you get two processes writing to two separate sections of disk you'll just
seek between the two doing a single write at a time.

Also, O_DIRECT on Linux has been seriously buggy on many releases.
Writes to the PostgreSQL WAL can be done in that mode, and we've
gotten reports like PANIC caused by open_sync on Linux suggesting
you can get both loud and undetected problems. One of the reasons
Oracle, which relies on sync writes and O_DIRECT behavior more, is so
careful about only certifying certain Linux kernels as usable is because
their quality varies so much in this area. Seems like ext4 is finally doing
all this the right way though as of 2.6.32, so maybe this will be more
practical moving forward

February 16, 2010 at 6:01 AM

Greg Smith's Note Magnet: A Linux write cache mystery

7 of 8

► 2010 (2)

► 2009 (15)

▼ 2008 (10)

► December (1)

► November (1)

▼ August (4)

Linux disk failures: Areca is not so SMART

"The essential postgresql.conf" at the BWPUG

Virtualbox and custom kernels

A Linux write cache mystery

► May (2)

► April (1)

► February (1)

About Me
Greg Smith

View my complete profile

Greg Smith's Note Magnet: A Linux write cache mystery

8 of 8

